

Scanning Infrared Depolarization System (SIRD)

Transmission dark-field plane polariscope

DATASHEET

SIRD in brief

The **SIRD** is a system for the fast, nondestructive and contactless recognition and visualization of stress fields, defects and buried structures in semiconductor wafers.

System values

type

principle

stress sensitivity

lateral resolution

maximum speed of scanning

maximum wafer diameter

wafer material

wafer handling

in-line qualification

software

transmission darkfield plane polariscope

stress-induced optical birefringence

in-plane shear stress ≥ 0.1 kPa

≥ **100 µm** (optional 50 µm)

1 cm² s⁻¹

450 mm

Si ($\rho \ge 6 \times 10-3 \Omega$ cm), GaAs, InP, GaN, SiC

manual or automated (FOUP)

YES

working-off of wafer packages, customer-tailored recipes, automated defect counting and quantification

22.5k

SIRD applied for crystal growth optimization

Wafer showing a ring-like global stress field superimposed by eddies arising from the melt-crucible rotation. High-resolved shear stress map showing growth striations which represent a concave phase boundary on a slice cut in growth direction. Native birefringence and global fields have been eliminated by high-pass filtering.

SIRD for wafer edge qualification

¹⁾ but composed and shadowed

High-pass filtering eliminates global fields for better visualization of local stress indications, e. g. near edge defects.

SIRD analysis software allows for automated counting (near edge defect analysis).

SIRD applied for pinmark classification

¹⁾ but composed and shadowed

Pinmarks are caused by pins which support the wafer at high-temperature processes. They are sources of further defect formation.

SIRD analysis software can be used both for **counting** and **classifying** (strength, symmetry etc.) the pinmarks

SIRD applied for epitaxy monitoring

Extended **slipline** areas generate global tensile or compressive stress fields.

SIRD analysis software determines measures for **quantifying** the defective part of wafer (cummulative slipline length).